J acqueline A. D rewe and Paul W. G roundwater*' \dagger
Department of Chemistry, U niversity of Wales Cardiff, P O B ox 912, C ardiff CF13TB, UK

The synthesis of 12-amino-7a and 12-hydroxy-2-arylpyrano[2,3-a]acridin-4-ones 7 b and 19 via the von Strandtmann flavone annelation procedure is described, in which the pyranone ring is formed by the reaction of a β-ketosulfoxide 13,18 with an aromatic aldehyde.

Introduction

We have recently reported the synthesis and initial biological testing of 12 -amino-7a and 12-hydroxy-2-phenylpyrano[2,3-a]-acridin-4-one 7b. ${ }^{1}$ The synthesis of these pyranoacridinones was achieved by the base-catalysed cyclisation of the imines $\mathbf{5}$, followed by aromatisation of the dihydro compounds 6 thus formed (Scheme 1). A key intermediate in this synthetic

Scheme 1
sequence was 7 -oxo-5,6,7,8-tetrahydroflavone $\mathbf{3}$ which was condensed with anthranilonitrile $\mathbf{4 a}$, or ethyl anthranilate $\mathbf{4 b}$, to give the imines $\mathbf{5}$. The oxoflavone $\mathbf{3}$ was prepared by the acidcatalysed cyclisation of the triketone $\mathbf{2}$, itself obtained from the acylation of the diketone $\mathbf{1}$.

A lthough we have used this route to prepare sufficient quantities of 12-amino-2-phenylpyrano[2,3-a]acridin-4-one 7a for biological testing it has a number of drawbacks; (i) the acylation of the diketone $\mathbf{1}$ to give the triketone $\mathbf{2}$ is both capricious and

[^0]poor yielding, (ii) the base-catalysed cyclisation of the imines 5, to the dihydropyrano[2,3-a]acridin-4-ones 6, proceeds in poor yield and (iii) we wished to preparea number of derivatives with substituted aromatic groups at the 2-position. The synthesis of these derivatives was suggested by our recent review of the structures of known protein tyrosine kinase inhibitors. ${ }^{2}$ Ideally these derivatives would be synthesised from a common, late intermediate in the synthesis.
All of these drawbacks made our original synthetic scheme inappropriate for our purposes and we thus set out to prepare the pyrano[2,3-a]acridin-4-ones via an alternative route. We report here the elaboration of an acridine skeleton via the annelation of a pyranone ring. Crucially, this route involves fewer overall steps, proceeds in higher overall yield and allows the introduction of the aryl group in a simple final step.

Results and discussion

12-A mino-2-phenylpyrano[2,3-a]acridin-4-one (A PPA) 7a was prepared in 6 steps, starting from cyclohexane-1,3-dione 8, by the von Strandtmann flavone annelation procedure, ${ }^{3}$ a key step in which is the formation of a β-ketosulfoxideby reaction of the dimsyl anion with an ester (Scheme 2). The ester required for

Scheme 2 Reagents and conditions: i, $2-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CN}$ 5a, PTSA, PhCH_{3}, reflux, 68%; ii, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CuCl}, \mathrm{THF}$, reflux, 60%; iii, NaH (3 equiv.), (EtO) ${ }_{2} \mathrm{CO}, 1,2-\mathrm{DME}, 15$-crown-5, reflux, 32%; iv, DDQ, dioxane, reflux, 81%; v, NaH (4 equiv.), DM SO, THF, $60^{\circ} \mathrm{C}, 62 \%$; vi, PhCHO, piperidine, $\mathrm{PhCH}_{3}, 1,2-\mathrm{D}$ M E, D M SO, reflux, 52%
the preparation of 7a is ethyl 9-amino-1-hydroxyacridine-2-carboxylate 12, which we have prepared in four steps from cyclohexane-1,3-dione 8 . Cyclohexane-1,3-dione 8 was condensed with anthranilonitrile to give the enamine $9 .{ }^{4}$ Basecatalysed cyclisation of this enamine, from the most stabilised anion at the 2-position onto the pendant cyano group, followed by tautomerisation, gives the aminoacridinone 10. Ethoxycarbonylation of the anion of this ketone with diethyl carbonate then gave the β-hydroxy ester 11, which was oxidised to the fully aromatic system 12 using DDQ. The ester 12 was then reacted with the dimsyl anion to give the β-keto sulfoxide 13. A key feature in the identification of this compound is the presence of an AB system ($J 14 \mathrm{~Hz}$) for the diastereotopic 2^{\prime} hydrogens in the ${ }^{1} \mathrm{H}$ NM R spectrum. Finally, this sulfoxide $\mathbf{1 3}$ was reacted with benzaldehyde under base-catalysis to give A PPA 7a. The overall yield for this sequence (3.4\%) is greater than for our previous synthesis (1.9\%), and it also has the advantages that it does not involve the complex and capricious triketone formation, and a range of 2 -aryl substituted derivatives can be prepared in the final step, from the sulfoxide 13, by replacing the benzaldehyde with a range of substituted benzaldehydes.

In order to highlight the easy preparation of 2-aryl-pyrano[2,3-a]acridinones using this route, we have prepared a number of 2-aryl-12-hydroxypyrano[2,3-a]acridin-4-ones 7b, 19 (Scheme 3). In this case, the ester 17 required for the prepa-

Scheme 3 Reagents and conditions: i, $\mathrm{NaH}, \mathrm{DMF}, 50^{\circ} \mathrm{C}$ then $90^{\circ} \mathrm{C}$, 74%; ii, N aH (3 equiv.), (EtO) 2 CO , reflux, 85%; iii, DDQ, dioxane, reflux, 98%; iv, N aH (4 equiv.), DM SO, $70^{\circ} \mathrm{C}$ then room temp., 52%; v, ArCH O, piperidine, reflux
ration of 12-hydroxy-2-phenylpyrano[2,3-a]acridin-4-one7bwas prepared in three steps, starting from cyclohexane-1,3-dione 8 and isatoic anhydride 14 (Scheme 3). Initially, the dione and isatoic anhydride were coupled using the method of M annfred and Siegfried to give 1,2,3,4-tetrahydro-9-hydroxyacridin-1-one 15. ${ }^{5}$ A cylation of this dione $\mathbf{1 5}$ with sodium hydride and diethyl carbonate gave the β-ketoester 16 , which was aromatised with DDQ to give ethyl 1,9-dihydroxyacridine-2-carboxylate 17 . Coupling of the ester with the dimsyl anion, generated from dimethyl sulfoxide and sodium hydride, gave the β-keto sulfoxide 18, which was reacted with a range of aromatic aldehydes in

Fig. 1 Topoisomerase-D NA cleavable complex
the presence of piperidine to give the 2-aryl-12-hydroxypyrano-[2,3-a]acridin-4-ones 7b, 19.
12-A mino-2-phenylpyrano[2,3-a]acridin-4-one (APPA) 7a has been tested in the N ational Cancer Institute (Developmental Therapeutics Program) anti-tumour drug discovery screen. APPA 7a was shown to inhibit a wide range of cancer cell lines with all $\mathrm{IC}_{50} \mathrm{~s}$ (60 cell lines) in the range 0.1-1.4 $\mu \mathrm{mol}$ dm^{-3}. The most promising results were obtained against leukaemia and colon cancer cell lines. A s part of this screening process the profile of inhibitory activity is compared to that of anti-tumour agents with known modes of action. The pattern of activity exhibited by APPA 7a resembles that of known topoisomerase II inhibitors.

The topoisomerases are enzymes which catalyse the topological change of DNA by forming the so-called cleavable complex. ${ }^{6}$ This complex is formed by the topoisomerase II cutting both DNA strands and forming a covalent bond between the tyrosine residue of each protein sub-unit and one of the newly formed 5 '-phosphate ends of the DNA, Fig. 1. This process is very similar to that involved in protein tyrosine kinase catalysed phosphorylation, and it is therefore not surprising that A PPA 7a, which we have shown to be a PTK inhibitor, and other PTK inhibitors such as the tyrphostins, e.g. AG-555 20, also exhibit this activity. ${ }^{7}$

20

Experimental

M ps were determined on a Gallenkamp apparatus and are uncorrected. Elemental analyses were performed on a PerkinElmer 240C. IR Spectra were recorded on a Perkin-Elmer 1600 series FTIR spectrophotometer using sodium chloride plates. ${ }^{1} \mathrm{H}$ NMR Spectra were acquired on a Bruker WM 360 spectrometer at 360 M Hz . Coupling constants are given in Hz and all chemical shifts are relative to an internal standard of tetramethylsilane. Low resolution electron impact mass spectra were obtained on a Fisons VG Platform II (Cardiff); high resolution EI and electrospray spectra on a VG ZAB-E spectrometer (EPSRC M ass Spectrometry Service Centre, Swansea). Thin layer chromatography was performed on M erck silica gel $60 \mathrm{~F}_{254} \cdot 1,2$-D imethoxyethane (1,2-DME) and tetrahydrofuran were dried from sodium-benzophenone 3-(2'-Cyanoanilino)cyclohex-2-en-1-one 9 was prepared by the method of Shutske et al., in 68% yield, ${ }^{4}$ and $1,2,3,4,9,10$ -hexahydroacridine-1,9-dione 15 by the method of M anfred and Seigfried, in 74\% yield. ${ }^{5}$

12-A mino-2-phenylpyrano[2,3-a]acridin-4-one 7a

i) 9-A mino-1,2,3,4-tetrahydroacridin-1-one 10. This was prepared via a modification of the method of Shutske et al. ${ }^{4}$ A solution of 3-(2'-cyanoanilino)cyclohex-2-en-1-one 9 (6.00 g ,
0.028 mol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(8.25 \mathrm{~g})$ and cuprous chloride (0.10 g) was refluxed in dry THF ($130 \mathrm{~cm}^{3}$) for a total of 18 h , and filtered while hot into hexane ($100 \mathrm{~cm}^{3}$). The resulting precipitate was filtered under suction to give a brown solid, which was recrystallised from propan-2-ol, to give 9 -amino-1,2,3,4-tetrahydroacridin-1-one 10 as a pale brown powder (3.56 g , 60%), mp 237-239 ${ }^{\circ} \mathrm{C}$ (Found: C, 73.7; H, 5.5; N, 13.0 $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2}$ requires $\left.\mathrm{C}, 73.6 ; \mathrm{H}, 5.7 ; \mathrm{N}, 13.2 \%\right) ; \mathrm{v}_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1}$ $1605(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right.$]D M SO) $2.10(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6, \mathrm{H}-3), 2.70(2 \mathrm{H}$, t, J 6, H-2), 3.05 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{H}-4$), 7.45-7.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.60-7.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.35-8.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 8.50 (2 H, br s, N H 2); m/z 212 ($\mathrm{M}^{+}, 41 \%$), 184 (51), 155 (33), 117 (100) and 102 (41).
ii) Ethyl 9-amino-1-hydroxy-3,4-dihydroacridine-2-carboxylate 11. To a sample of freshly washed $\mathrm{NaH}(0.60 \mathrm{~g}, 0.015$ mol; $60 \% \mathrm{w} / \mathrm{w}$ in mineral oil) was added 1,2-DME ($11 \mathrm{~cm}^{3}$) and $15-$ Crown- 5 (5 drops). A fter stirring for $30 \mathrm{~min}, 9$-amino-1,2,3,4-tetrahydroacridin-1-one 10 ($1.11 \mathrm{~g}, 5.24 \mathrm{mmol}$) was added and the reaction mixture stirred for a further 30 min . Diethyl carbonate ($1.56 \mathrm{~cm}^{3}$) was added slowly to the solution and reflux was maintained for 18 h . On cooling, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to neutrality and the resulting precipitate was filtered off to give ethyl 9 -amino-1-hydroxy-3,4-dihydroacridine-2-carboxylate 11 as an orange solid ($0.48 \mathrm{~g}, 32 \%$) , mp 201-203 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 284.116$. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{M}, 284.116\right) ; \mathrm{v}_{\text {max }}(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 3450$ and 3150 $\left(\mathrm{NH}_{2}\right)$ and $1744(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right)$, $2.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}_{2}-3\right.$ or $\left.\mathrm{H}_{2}-4\right), 2.98\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}_{2}-3\right.$ or $\left.\mathrm{H}_{2}-4\right)$, $4.19\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6$ or $\mathrm{H}-7), 7.74$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6$ or H-7), 7.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-5$ or H-8), 8.40 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-5$ or $\mathrm{H}-8), 9.87\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $12.50(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z} 284\left(\mathrm{M}^{+}, 18 \%\right), 243(100), 238(41), 221(46)$ and 83 (41).
iii) Ethyl 9-amino-1-hydroxyacridine-2-carboxylate 12. Ethyl 9-amino-1-hydroxy-3,4-dihydroacridine-2-carboxylate $\quad 11$ $(0.15 \mathrm{~g}, 0.53 \mathrm{mmol})$ and DD Q $(0.13 \mathrm{~g}, 0.58 \mathrm{mmol})$ were refluxed in 1,4-dioxane ($12 \mathrm{~cm}^{3}$) for 12 h . On cooling, the resulting precipitate was filtered off to give ethyl 9 -amino-1-hydroxy-acridine-2-carboxylate 12 as a brown powder ($0.12 \mathrm{~g}, 81 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: M , 282.100. Calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}: ~ \mathrm{M}$, 282.100); $v_{\max }\left(\mathrm{Nujol}^{2}\right) / \mathrm{cm}^{-1} 3550$ and $3500\left(\mathrm{NH}_{2}\right)$ and 1730 ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right.$] M SO) $1.34\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 4.31(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3$ or H-4), $7.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{ArH})$, $7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}), 7.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 8, ArH), $8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9$, $\mathrm{H}-3$ or $\mathrm{H}-4), 8.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}), 10.34\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and 13.00 ($1 \mathrm{H}, \mathrm{br}$ s, OH); m/z 283 ($\mathrm{M}+1,33 \%$), 243 (29), 237 (30), 195 (32) and 149 (25).
iv) 12-A mino-2-phenylpyrano[2,3-a]acridin-4-one 7a. To a sample of freshly washed $\mathrm{NaH}(0.11 \mathrm{~g}, 2.75 \mathrm{mmol} ; 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil) was added anhydrous DM SO ($1.88 \mathrm{~cm}^{3}$) and dry THF ($5 \mathrm{~cm}^{3}$) and the solution was heated at $60^{\circ} \mathrm{C}$ for 45 min under a nitrogen atmosphere. Ethyl 9-amino-1-hydroxyacridine-2-carboxylate $12(0.20 \mathrm{~g}, 0.64 \mathrm{mmol})$ was added dropwise in DM SO ($1 \mathrm{~cm}^{3}$) to the reaction mixture, which was left to stir for 1.25 h . Dilute aqueous HCl was added to pH 6 , and the solution was extracted with ethyl acetate $\left(5 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried and concentrated to 5% volume. 9A mino-1-hydroxy-2-(2'-methylsulfinylacetyl)acridine 13 precipitated as a green solid ($0.14 \mathrm{~g}, 62 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}{ }^{-}$ (N ujol $) / \mathrm{cm}^{-1} 3490$ and $3210\left(\mathrm{NH}_{2}\right), 1637(\mathrm{C}=0)$ and $1055(\mathrm{~S}=0)$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14, \mathrm{H}-2^{\prime}\right)$, 4.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14, \mathrm{H}-2^{\prime}$), $6.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3$ or $\mathrm{H}-4$), 7.40 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6$ or $\mathrm{H}-7$), $7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-5$ or $\mathrm{H}-8$), 7.80 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6$ or $\mathrm{H}-7$), 7.99 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3$ or $\mathrm{H}-4$), 8.44 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-5$ or $\mathrm{H}-8$), $9.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and 12.67 (2 H, br s, N H 2); m/z (ES $\left.{ }^{-}\right) 314$ (20\%), 313 (100), 301 (22), 250 (44) and 209 (24).

A mixture of 9-amino-1-hydroxy-2-(2'-methylsulfinylacetyl)acridine 13 ($27 \mathrm{mg}, 0.09 \mathrm{mmol}$) and benzaldehyde (20 $\mathrm{mg}, 0.19 \mathrm{mmol}$) was refluxed in toluene ($7.5 \mathrm{~cm}^{3}$), 1,2-D M E (7.5
$\left.\mathrm{cm}^{3}\right)$ and DM SO $\left(0.5 \mathrm{~cm}^{3}\right)$, with a catalytic amount of piperidine (8 drops) over a period of 5 days. On cooling, the solvent was removed and the residue purified by preparative TLC, eluting with ethyl acetate to give 12 -amino-2-phenylpyrano[2,3-a]-acridin-4-one 7a as an orange solid ($15 \mathrm{mg}, 52 \%$), mp 310$312{ }^{\circ} \mathrm{C}$ (Found: M , 388.1055. Calc. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}: ~ M$, 338.1055); $\mathrm{v}_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3540$ and $3400\left(\mathrm{NH}_{2}\right)$ and 1640 ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}\right.$ SO) $7.14(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8$, H-9 or H-10), 7.66-7.72 (3 H, m, H-3', 4', 5'), 7.76 ($1 \mathrm{H}, \mathrm{d}$, J $9, \mathrm{H}-5$ or H-6), $7.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or $\mathrm{H}-10$), $7.93(1 \mathrm{H}, \mathrm{d}$, J $8, \mathrm{H}-8$ or $\mathrm{H}-11$), 8.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$ or $\mathrm{H}-6$), 8.11-8.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 6^{\prime}$), $8.40\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right.$) and $8.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, H-8 or H-11); m/z 339 ($\mathrm{M}+1,44 \%$), 338 (82), 180 (41), 134 (27) and 77 (100).

2-A ryl-12-hydrox ypyrano[2,3-a]acridin-4-ones 7b, 19

i) Ethyl 1,2,3,4-tetrahydro-1-ox0-9-hydrox yacridine-2-carboxylate 16. To a sample of freshly washed $\mathrm{NaH}(0.27 \mathrm{~g}, 6.75$ $\mathrm{mmol}, 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil) was added dry 1,2-DME ($5 \mathrm{~cm}^{3}$) and 15-C rown-5 (5 drops). 1,2,3,4,9,10-H exahydroacridine $1,9-$ dione $15(0.50 \mathrm{~g}, 2.30 \mathrm{mmol})$ was added and the mixture stirred at room temperature for 30 min then refluxed for 18 h . On cooling, aqueous $\mathrm{NH}_{4} \mathrm{CI}\left(10 \% \mathrm{w} / \mathrm{v} ; 30 \mathrm{~cm}^{3}\right)$ was added and the resulting precipitate filtered off to give ethyl 1,2,3,4-tetra-hydro-1-oxo-9-hydroxyacridine-2-carboxylate 16 as a cream powder ($0.57 \mathrm{~g}, 85 \%$), mp $266-267^{\circ} \mathrm{C}$ (Found: M, 285.100. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{4}: \mathrm{M}, 285.100\right) ; \mathrm{v}_{\max }(\mathrm{N} \mathrm{ujol}) / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and $1738(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 2.45(2$ H, q, J 7, H-3), 3.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 3.80 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{H}-2$), 4.35 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $7.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{H}-7), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, H-5), $7.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8)$ and $12.00(1$ H, br s, OH); m/z 285 ($\mathrm{M}^{+}, 1 \%$), 183 (12), 154 (17), 55 (89), 45 (66) and 43 (100).
ii) Ethyl 1,9-dihydroxyacridine-2-carboxylate 17. A solution of ethyl 1,2,3,4-tetrahydro-1-oxo-9-hydroxyacridine-2-carboxylate 16 ($70 \mathrm{mg}, 0.21 \mathrm{mmol}$) and DDQ ($63 \mathrm{mg}, 0.25 \mathrm{mmol}$) was refluxed in 1,4 -dioxane ($5 \mathrm{~cm}^{3}$) for 12 h . On cooling, the resulting precipitate was filtered off to give ethyl 1,9-dihydroxyacridine-2-carboxylate 17 as a brown powder (68 mg , 98%), $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 283.0845$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$: $\mathrm{M}, 283.0845) ; \mathrm{v}_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and 1705 (CO); $\delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 4.20(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3$ or H-4), $7.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{ArH})$, $7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}), 7.85(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 8, ArH), $8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9$, H-3 or H-4) and 8.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{ArH}$); m/z 282 ($\mathrm{M}^{+}, 6 \%$), 228 (29), 200 (20), 110 (29), 87 (100) and 77 (73).
iii) 1,9-D ihydroxy-2-(2'-methylsulfinylacetyl)acridine 18. To a sample of freshly washed $\mathrm{NaH}(0.22 \mathrm{~g}, 5.5 \mathrm{mmol} ; 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil dispersion) was added anhydrous D M SO ($3.7 \mathrm{~cm}^{3}$) and the solution was heated at $60^{\circ} \mathrm{C}$ for 45 min under a nitrogen atmosphere. Ethyl 1,9-dihydroxyacridine-2-carboxylate 17 ($0.40 \mathrm{~g}, 1.41 \mathrm{mmol}$) was added to the reaction mixture, which was then left to stir for 1.25 h . A queous $\mathrm{NH}_{4} \mathrm{CI}\left(15 \mathrm{~cm}^{3}\right)$ was added and the solution extracted with ethyl acetate (5×100 cm^{3}). The combined organic phase was dried and concentrated to 5\% volume. 1,9-D ihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 precipitated as a green solid ($0.23 \mathrm{~g}, 52 \%$), mp 177$179{ }^{\circ} \mathrm{C}$ (Found: C, 55.0; H, 5.0; N, 3.55. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ requires $\mathrm{C}, 55.0 ; \mathrm{H}, 4.8 ; \mathrm{N}, 3.6 \%)$; $\mathrm{v}_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3590(\mathrm{OH})$, $1635(\mathrm{C}=0)$ and $1055(\mathrm{~S}=\mathrm{O})$; $\delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right.$]D M SO) $2.70(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $4.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15, \mathrm{H}-2^{\prime}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15, \mathrm{H}-2^{\prime}\right)$, 7.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3$ or H-4), 7.45 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6$ or H-7), 7.70 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-5$ or H-8), 7.91 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-6$ or H-7), 8.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3$ or $\mathrm{H}-4$) and 8.30 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-5$ or H-8); m/z 316 (M + 1, 100\%), 306 (18), 284 (32), 149 (17) and 120 (19).
iv) 12-H ydroxy-2-phenylpyrano[2,3-a]acridin-4-one 7b. A mixture of 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 ($70 \mathrm{mg}, 0.22 \mathrm{mmol}$) and benzaldehyde ($30 \mathrm{mg}, 0.24 \mathrm{mmol}$) was refluxed in toluene ($7.5 \mathrm{~cm}^{3}$), 1,2-D M E ($7.5 \mathrm{~cm}^{3}$) and DM SO
$\left(0.5 \mathrm{~cm}^{3}\right)$, with a catalytic amount of piperidine (6 drops) over a period of 18 h . On cooling, the resluting precipitate was collected to give 12 -hydroxy-2-phenylpyrano[2,3-a]acridin-4-one 7 b as a yellow solid ($43 \mathrm{mg}, 57 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ [Found: M , 340.097. Calc. for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{M}, 340.097(\mathrm{M}+1)$]; $v_{\text {max }}$ (N ujol) $/ \mathrm{cm}^{-1} 1635(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}$ M SO) $7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 7.40 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or H-10), 7.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$ or H-6), 7.63-7.64 (4 H, m, H-8 or H-11, H-3', 4', 5'), $7.81(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8$, H-9 or H-10), 8.60 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$ or H-6), 8.36 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, H-8 or H-11) and 8.55 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-2^{\prime}, 6^{\prime}$); m/z $340(\mathrm{M}+1$, $40 \%), 260(60), 220(71), 167$ (86) and 102 (63).

A lso prepared by the same method were:

12-H ydroxy-2-(3 '-nitrophenyl)pyrano [2,3-a]acridin-4-one

19a. A mixture of 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 3-nitrobenzaldehyde (40 mg , 0.26 mmol) in toluene ($7.5 \mathrm{~cm}^{3}$), 1,2-DME ($7.5 \mathrm{~cm}^{3}$) and DM SO ($1 \mathrm{~cm}^{3}$) in the presence of a catalytic amount of piperidine (5 drops) was refluxed over a period of 36 h . On cooling, the resulting precipitate was collected to give 12-hydroxy-2-(3'nitrophenyl) pyrano[2,3-a]acridin-4-one 19a as a green solid (12 $\mathrm{mg}, 20 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 384.075$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{12}{ }^{-}$ $\left.\mathrm{N}_{2} \mathrm{O}_{5}: \mathrm{M}, 384.075\right) ; \mathrm{V}_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1641$ ($\mathrm{C}=0$), 1520 and $1349\left(\mathrm{~N} \mathrm{O}_{2}\right) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM}\right.$ SO) $7.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or $\mathrm{H}-10)$, 7.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $7.60-7.70$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ or H-11, H-5 or $\mathrm{H}-6, \mathrm{OH}), 7.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or $\mathrm{H}-10$), $7.90(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9$, H-5'), 8.25 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$ or H-6), 8.30 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or H-11), 8.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-6^{\prime}$), 8.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-4^{\prime}$) and 9.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}$); m/z 384 (${ }^{+}, 8 \%$), 368 (12), 338 (5), 236 (15) and 77 (100).

12-H ydroxy-2-(4'-nitrophenyl)pyrano[2,3-a] acridin-4-one
19b. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 $(70 \mathrm{mg}, 0.22 \mathrm{mmol})$ and 4-nitrobenzaldehyde ($60 \mathrm{mg}, 0.44$ mmol) in toluene ($7.5 \mathrm{~cm}^{3}$), 1,2-D M E ($7.5 \mathrm{~cm}^{3}$) and DM SO (1 cm^{3}) in the presence of a catalytic amount of piperidine (6 drops) on refluxing for 18 h . On cooling, the resulting precipitate was collected to give 12-hydroxy-2-(4'-nitrophenyl)pyrano-[2,3-a]acridin-4-one 19b as an orange solid ($22 \mathrm{mg}, 26 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 385.082$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$: $\left.(\mathrm{M}+\mathrm{H})^{+}, 385.082\right] ; \mathrm{v}_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1637(\mathrm{C}=0), 1338\left(\mathrm{NO}_{2}\right)$ and $\left.1514\left(\mathrm{~N} \mathrm{O}_{2}\right) ; \delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{D} \mathrm{M} \mathrm{SO}\right) 7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.30(1 \mathrm{H}$, d, J $9, H-5$), 7.38 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{H}-9$ or H-10), 7.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, H-8 or H-11), 7.75 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{H}-9$ or $\mathrm{H}-10$), $7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9$, H-6), 8.26 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{H}-8$ or $\mathrm{H}-11$), 8.34 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$ or $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$), $8.45\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3^{\prime}\right.$ and $\mathrm{H}-5^{\prime}$ or $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$) and $12.20(1 \mathrm{H}$, br s, OH$)$; $\mathrm{m} / \mathrm{z} 385(\mathrm{M}+1,36 \%), 282$ (20), 220 (19), 140 (21) and 77 (56).

12-H ydroxy-2-(3'-methoxyphenyl)pyrano[2,3-a]acridin-4-

one 19c. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 ($90 \mathrm{mg}, 0.29 \mathrm{mmol}$) and 3-methoxybenzaldehyde ($80 \mathrm{mg}, 0.57 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$), DME ($20 \mathrm{~cm}^{3}$) and DM SO ($1 \mathrm{~cm}^{3}$) with a catalytic amount of piperidine (8 drops) on refluxing for 48 h . On cooling, the resulting precipitate was filtered off to give 12-hydroxy-2-(3'-methoxyphenyl)pyrano-[2,3-a]acridin-4-one 19c as a yellow crystalline solid (55 mg , 52%), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 369.100$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{4}$ M, 369.100); $\mathrm{v}_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1636(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right)$ $3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-4^{\prime}\right)$, $7.25(1 \mathrm{H}, \mathrm{s}$, H-3), 7.35 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-5^{\prime}$), 7.50 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or H-10), 7.55 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$), 7.65 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8, H-8 or H-11), 7.80 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or H-10), 8.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-6^{\prime}$), 8.15 (1 H , s, H-2'), $8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-6)$ and $8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or H-11); m/z 370 ($\mathrm{M}+1,55 \%$), 275 (42), 207 (30), 180 (15) and 86 (100).

12-H ydroxy-2-(4'-methoxyphenyl)pyrano[2,3-a]acridin-4one 19d. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and 4-methoxybenzaldehyde (90 $\mathrm{mg}, 0.63 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$), 1,2-D M E ($20 \mathrm{~cm}^{3}$) and DM SO ($1 \mathrm{~cm}^{3}$) with a catalytic amount of piperidine (8 drops) on refluxing for 48 h . On cooling, the resulting precipitate was filtered off to give 12-hydroxy-2-(4'-methoxyphenyl)pyrano-
[2,3-a]acridin-4-one 19d as a grey-green powder ($89 \mathrm{mg}, 76 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 369.100$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{M}$, 369.100); $\mathrm{v}_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1637(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{D}\right.$ M SO) 3.85 (3 $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.15\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.35$ (1 H, t, J 8, H-9 or H-10), 7.60 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$), $7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, H-8 or H-11), 7.75 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or H-10), 8.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9$, H-6), 8.30 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or H-11), 8.45 (2 H, d, J $9, \mathrm{H}^{\prime}-2^{\prime}, 6^{\prime}$) and $12.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z} 369\left(\mathrm{M}^{+}, 6 \%\right), 355(3), 275(10)$, 204 (10), 127 (23) and 83 (69).

12-H ydroxy-2-(3'-hydrox yphenyl)pyrano[2,3-a]acridin-4-one

 19e. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 ($90 \mathrm{mg}, 0.29 \mathrm{mmol}$) and 3-hydroxybenzaldehyde ($70 \mathrm{mg}, 0.57$ mmol) in toluene ($20 \mathrm{~cm}^{3}$), 1,2-D M E ($20 \mathrm{~cm}^{3}$) and DM SO (1 cm^{3}) with a catalytic amount of piperidine (8 drops) on refluxing for 48 h . On cooling, the solvent was removed in vacuo, the residue was dissolved in methanol, and then filtered through Celite. Removal of the solvent gave 12-hydroxy-2-(3'-hydroxyphenyl) pyrano[2,3-a]acridin-4-one 19e as a brown powder (36 $\mathrm{mg}, 36 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 355.0845$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{13}{ }^{-}$ $\left.\mathrm{NO}_{4}: ~ M, 355.0845\right) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1635(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DM SO) 7.00 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8, H-4'), 7.05 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), $7.30-7.40$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{H}-9$ or $\mathrm{H}-10$ and $\mathrm{H}-5^{\prime}$), $7.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5), 7.55(1 \mathrm{H}$, d, J $8, \mathrm{H}-8$ or H-11), $7.75(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or H-10), $7.85(1 \mathrm{H}, \mathrm{s}$, H-2'), 7.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-6^{\prime}$), 8.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-6$), 8.30 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or $\mathrm{H}-11), 9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $12.25(1 \mathrm{H}, \mathrm{s}$, OH); m/z 356 (M + 1, 43\%), 349 (37), 283 (16), 160 (55), 142 (83) and 86 (100).
12-H ydroxy-2-(4'-hydrox yphenyl)pyrano[2,3-a]acridin-4-one

19f. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 $(100 \mathrm{mg}, 0.032 \mathrm{mmol})$ and 4-hydroxybenzaldehyde (0.08 g , 0.63 mmol) in toluene ($20 \mathrm{~cm}^{3}$), 1,2-D M E ($20 \mathrm{~cm}^{3}$) and D M SO $\left(1 \mathrm{~cm}^{3}\right)$ with a catalytic amount of piperidine (8 drops) on refluxing for 48 h . On cooling, the resulting precipitate was collected to give12-hydroxy-2-(4'-hydroxyphenyl)pyrano[2,3-a]-acridin-4-one 19 f as a brown solid ($33 \mathrm{mg}, 30 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: $\mathrm{M}, 355.0845$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NO}_{4}$: M, 355.0845); $\mathrm{V}_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1647(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right.$]D M SO) $7.00(1 \mathrm{H}, \mathrm{S}$, H-3), 7.05 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-3^{\prime}, 5^{\prime}$), 7.35 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or $\mathrm{H}-10$), 7.66 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or $\mathrm{H}-11$), $7.70-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-9$ or H-10), 8.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-6$), $8.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-8$ or H-11) and $8.36\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}^{\prime} \mathbf{2}^{\prime}, 6^{\prime}\right)$; m/z $355\left(\mathrm{M}^{+}, 16 \%\right), 107$ (62), 90 (97) and 77 (100).

12-H ydroxy-2-(3', $\mathbf{4}^{\prime}$-dimethoxyphenyI) pyrano[2,3-a]acridin-4-one 19g. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 ($80 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 3,4-dimethoxybenzaldehyde ($80 \mathrm{mg}, 0.48 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$), 1,2-D M E ($20 \mathrm{~cm}^{3}$) and DM SO $\left(1 \mathrm{~cm}^{3}\right)$ in the presence of a catalytic amount of piperidine (8 drops) on refluxing for 36 h . On cooling, the solvent was removed in vacuo, and the residue dissolved in methanol, and filtered through Celite. The solvent was removed in vacuo to give 12-hydroxy-2-(3', $\mathbf{4}^{\prime}$-dimethoxyphenyl)pyrano[2,3 -a]acridin-4-one $\mathbf{1 9 g}$ as an orange solid ($25 \mathrm{mg}, 26 \%$), mp $>300{ }^{\circ} \mathrm{C}$ (Found: M, 399.111. Calc. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{5}: \mathrm{M}$, 399.111); $\mathrm{v}_{\text {max }}(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1642(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{D}$ M SO) 3.85 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.0\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.15(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.19(1$ H, d, J $8, \mathrm{H}-5^{\prime}$ or $\mathrm{H}-6^{\prime}$), 7.35 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or $\mathrm{H}-10$), 7.50 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-5$), 7.55 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or H-11), 7.75 (1 H , t, J $8, \mathrm{H}-9$ or $\mathrm{H}-10$), $8.10-8.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\mathrm{H}-5^{\prime}$ or H-6'), $8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9, \mathrm{H}-6), 8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or $\mathrm{H}-11$) and $12.25\left(1 \mathrm{H}, \mathrm{br}\right.$ s, 0 H); m/z $399\left(\mathrm{M}^{+}, 5 \%\right), 237$ (24), 151 (86) and 84 (100).
12-H ydroxy-2-(3'-nitro-4'-methoxyphenyl)pyrano[2,3-a]-acridin-4-one 19h. From 1,9-dihydroxy-2-(2'-methylsulfinylacetyl)acridine 18 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and 4-methoxy-3nitrobenzaldehyde ($110 \mathrm{mg}, 0.64 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$), 1,2-DME ($20 \mathrm{~cm}^{3}$) and DMSO ($1 \mathrm{~cm}^{3}$) in the presence of a catalytic amount of piperidine (10 drops) on refluxing for 18 h . On cooling, the resulting precipitate was collected to give 12-hydroxy-2-(3'-nitro-4'-methoxyphenyl)pyrano[2,3-a]acridin-4one 19 h as a pale yellow powder ($73 \mathrm{mg}, 56 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$
(Found: M, 414.085. Calc. for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{M}, 414.085$); $\mathrm{V}_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3259(\mathrm{OH}), 2805(\mathrm{OM} \mathrm{e}), 1640$ (C=O), 1536 and $1376\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right) 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 3), 7.35 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{H}-9$ or H-10), $7.58-7.68$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-5$ ' and $\mathrm{H}-8$ or $\mathrm{H}-11), 7.78(1 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{H}-9$ or $\mathrm{H}-10), 8.20(1 \mathrm{H}, \mathrm{d}$, J $9, H-6$), $8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-8$ or H-11), $8.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$, H-6') and 9.00 ($\left.1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$; m/z 415 ($\mathrm{M}+1,35 \%$), 391 (86), 353 (7), 279 (24), 167 (29), 149 (87) and 113 (100).

Acknowledgements

We would like to thank the University of Wales for a studentship (J. A . D.); the EPSRC M ass Spectrometry Service Centre, Swansea, for high resolution mass spectra; and the NCl D evelopmental Therapeutics Program for the testing of A PPA

References

1 P. W. Groundwater and K. R. H. Solomons, J. Chem. Soc., Perkin Trans. 1, 1994, 173.
2 P. W. Groundwater, K. R. H. Solomons, J. A. Drewe and M. A. M unawar, in Prog. Med. Chem., ed. G. P. Ellis and D. K. L uscombe, Elsevier Science, A msterdam, 1996, 33, 233.
3 M. C. Pirrung and Y. R . Lee, J. A m. C hem. Soc., 1995, 117, 4814.
4 G. M. Shutske, F. A. Pierrat, M. L. Cornfeldt, M. R. Szewczak, F. P. H uger and G. M. Borse, J. M ed. Chem., 1988, 31, 1297.

5 S. M anfred and J. Siegfried, Z. Chem., 1985, 25, 432.
6 P. D'A rpa and L. F. Liu, B iochim. Biophys. A cta, 1989, 989, 163.
7 E. A falo, S. Iftach, S. Segal, A. G azit and E. Priel, Cancer Res., 1994, 54, 5138.

Paper 6/06689E
R eceived 30th September 1996 A ccepted 12th N ovember 1996

[^0]: \dagger Current address: School of Health Sciences, U niversity of Sunderland, Sunderland SR 1 3SD, U K .

